Room temperature nonlocal detection of charge-spin interconversion in a topological insulator
Journal article, 2024

Topological insulators (TIs) are emerging materials for next-generation low-power nanoelectronic and spintronic device applications. TIs possess non-trivial spin-momentum locking features in the topological surface states in addition to the spin-Hall effect (SHE), and Rashba states due to high spin-orbit coupling (SOC) properties. These phenomena are vital for observing the charge-spin conversion (CSC) processes for spin-based memory, logic and quantum technologies. Although CSC has been observed in TIs by potentiometric measurements, reliable nonlocal detection has so far been limited to cryogenic temperatures up to T = 15 K. Here, we report nonlocal detection of CSC and its inverse effect in the TI compound Bi1.5Sb0.5Te1.7Se1.3 at room temperature using a van der Waals heterostructure with a graphene spin-valve device. The lateral nonlocal device design with graphene allows observation of both spin-switch and Hanle spin precession signals for generation, injection and detection of spin currents by the TI. Detailed bias- and gate-dependent measurements in different geometries prove the robustness of the CSC effects in the TI. These findings demonstrate the possibility of using topological materials to make all-electrical room-temperature spintronic devices.

Author

Anamul Md Hoque

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Lars Sjöström

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Dmitrii Khokhriakov

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Bing Zhao

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Saroj Prasad Dash

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

npj 2D Materials and Applications

23977132 (eISSN)

Vol. 8 1 10

2Dimensional van der Waals Spin-Orbit Torque Technology

Swedish Research Council (VR) (2021-05925), 2021-12-01 -- 2024-11-30.

2D Heterostructure Non-volatile Spin Memory Technology (2DSPIN-TECH)

European Commission (EC) (EC/HE/101135853), 2023-12-01 -- 2026-11-30.

Subject Categories

Atom and Molecular Physics and Optics

Other Electrical Engineering, Electronic Engineering, Information Engineering

Condensed Matter Physics

DOI

10.1038/s41699-024-00447-y

More information

Latest update

4/2/2024 1