Neural network enabled nanoplasmonic hydrogen sensors with 100 ppm limit of detection in humid air
Journal article, 2024

Environmental humidity variations are ubiquitous and high humidity characterizes fuel cell and electrolyzer operation conditions. Since hydrogen-air mixtures are highly flammable, humidity tolerant H2 sensors are important from safety and process monitoring perspectives. Here, we report an optical nanoplasmonic hydrogen sensor operated at elevated temperature that combined with Deep Dense Neural Network or Transformer data treatment involving the entire spectral response of the sensor enables a 100 ppm H2 limit of detection in synthetic air at 80% relative humidity. This significantly exceeds the <1000 ppm US Department of Energy performance target. Furthermore, the sensors pass the ISO 26142:2010 stability requirement in 80% relative humidity in air down to 0.06% H2 and show no signs of performance loss after 140 h continuous operation. Our results thus demonstrate the potential of plasmonic hydrogen sensors for use in high humidity and how neural-network-based data treatment can significantly boost their performance.

Author

David Tomecek

Chalmers, Physics, Chemical Physics

Henrik Klein Moberg

Chalmers, Physics, Chemical Physics

Sara Nilsson

Chalmers, Physics, Chemical Physics

Athanasios Theodoridis

Chalmers, Physics, Chemical Physics

Iwan Darmadi

Chalmers, Physics, Chemical Physics

Daniel Midtvedt

University of Gothenburg

Giovanni Volpe

University of Gothenburg

Olof Andersson

Insplorion Sensor Systems AB

Christoph Langhammer

Chalmers, Physics, Chemical Physics

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 15 1 1208

Subject Categories

Aerospace Engineering

Other Physics Topics

Signal Processing

DOI

10.1038/s41467-024-45484-9

PubMed

38332035

More information

Latest update

3/22/2024