Inference of the low-energy constants in Δ -full chiral effective field theory including a correlated truncation error
Journal article, 2024

We sample the posterior probability distributions of the low-energy constants (LECs) in Δ-full chiral effective field theory (χEFT) up to third order. We use eigenvector continuation for fast and accurate emulation of the likelihood and Hamiltonian Monte Carlo to draw effectively independent samples from the posteriors. Our Bayesian inference is conditioned on the Granada database of neutron-proton (np) cross sections and polarizations. We use priors grounded in χEFT assumptions and a Roy-Steiner analysis of pion-nucleon scattering data. We model correlated EFT truncation errors using a two-feature Gaussian process, and find correlation lengths for np scattering energies and angles in the ranges 45-83 MeV and 24-39 degrees, respectively. These correlations yield a nondiagonal covariance matrix and reduce the number of independent scattering data with factors of 8 and 4 at the second and third chiral orders, respectively. The relatively small difference between the second- and third-order predictions in Δ-full χEFT suppresses the marginal variance of the truncation error and the effects of its correlation structure. Our results are particularly important for analyzing the predictive capabilities in ab initio nuclear theory.

Author

Isak Svensson

Chalmers, Physics, Subatomic, High Energy and Plasma Physics

Andreas Ekström

Chalmers, Physics, Subatomic, High Energy and Plasma Physics

Christian Forssén

Chalmers, Physics, Subatomic, High Energy and Plasma Physics

Physical Review C

24699985 (ISSN) 24699993 (eISSN)

Vol. 109 6 064003

Strong interactions for precision nuclear physics (PrecisionNuclei)

European Commission (EC) (EC/H2020/758027), 2018-02-01 -- 2023-01-31.

Subject Categories

Subatomic Physics

Other Physics Topics

Probability Theory and Statistics

DOI

10.1103/PhysRevC.109.064003

More information

Latest update

7/1/2024 1