Defect-assisted reversible phase transition in mono- and few-layer ReS2
Journal article, 2025

2D transition metal dichalcogenide (TMD) materials have attracted interest due to their remarkable excitonic, optical, electrical, and mechanical properties, which are dependent on their crystal structure. Consequently, controlling the crystal structure of these materials is essential for fine-tuning their performance, e.g., linear and nonlinear optical, as well as charge transport properties. While various phase-switching TMD materials are available, their transitions are often irreversible. Here, we investigate the mechanism of a light-induced reversible phase transition in mono- and bilayer rhenium disulfide (ReS2). Our observations, based on transmission electron microscopy, nonlinear spectroscopy, and density functional theory, reveal a transition from the ground T ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{T}}<^>{\prime\prime}$$\end{document} (double-distorted T) to the metastable H '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{H}}<^>{\prime}$$\end{document} (distorted H) phase under femtosecond laser irradiation or influence of highly-energetic electrons. We show that the formation of sulfur vacancies facilitates this phenomenon. Our findings pave the way toward manipulating the crystal structure of ReS2 and possibly its heterostructures.

Author

Georgii Zograf

Chalmers, Physics, Nano and Biophysics

Andrew Yankovich

Chalmers, Physics, Nano and Biophysics

Betül Kücüköz

Chalmers, Physics, Nano and Biophysics

Abhay Vivek Agrawal

Nano and Biophysics DP

Aleksandr Poliakov

Chalmers, Physics, Nano and Biophysics

Joachim Ciers

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Fredrik Eriksson

Chalmers, Physics, Condensed Matter and Materials Theory

Åsa Haglund

Chalmers, Microtechnology and Nanoscience (MC2), Photonics

Paul Erhart

Chalmers, Physics

Tomasz Antosiewicz

Chalmers, Physics, Bionanophotonics

University of Warsaw

Eva Olsson

Chalmers, Physics, Nano and Biophysics

Timur Shegai

Chalmers, Physics, Nano and Biophysics

NPJ 2D MATERIALS AND APPLICATIONS

2397-7132 (eISSN)

Vol. 9 1 3

Kvantplasmonik – en teknologi för foton-fotonväxelverkan på kvantnivå vid rumstemperatur

Swedish Research Council (VR) (2016-06059), 2017-01-01 -- 2022-12-31.

Tunable optical resonators and metamaterials through Casimir self-assembly

Swedish Research Council (VR) (2022-03347), 2023-01-01 -- 2026-12-31.

Visualizing the dynamics of strong light-matter interactions using NEX-GEN-STEM

Swedish Research Council (VR) (2020-04986), 2021-01-01 -- 2024-12-31.

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut and Alice Wallenberg Foundation (2019.0140), 2020-07-01 -- 2025-06-30.

Stark plasmon-exciton koppling för effektiva foton-foton interaktioner

Swedish Research Council (VR) (2017-04545), 2018-01-01 -- 2021-12-31.

Subject Categories (SSIF 2025)

Materials Chemistry

Subatomic Physics

Infrastructure

Chalmers Materials Analysis Laboratory

Myfab (incl. Nanofabrication Laboratory)

DOI

10.1038/s41699-025-00524-w

More information

Latest update

2/7/2025 2