Molecular-Level Insights into Next-Generation Battery Electrolytes
Doctoral thesis, 2025

Unconventional electrolytes, especially highly concentrated electrolytes (HCEs) and deep eutectic electrolytes (DEEs), are emerging as promising candidates for a wide range of battery chemistries, including lithium-ion, lithium metal, and calcium batteries. Their tunability, non-volatility, and wide electrochemical stability windows make them attractive alternatives to conventional electrolytes. However, while the fundamental properties that make HCEs and DEEs attractive, such as their electrochemical stability and low melting points, are driven by molecular interactions, the interplay between these interactions and local structuring and their effects on macroscopic properties remains poorly understood.

To bridge this gap, we employ tight-binding and classical molecular dynamics simulations to investigate the local coordination environment, hydrogen bonding networks, and molecular-level ordering, especially in DEEs. By focusing on the interplay between hydrogen bond donors and different anion sizes and symmetries in hydrogen bond acceptors, we systematically explore how molecular interactions influence solvation structure and ion mobility. Our findings suggest that anion symmetry and size, together with hydrogen bonding strength, govern the solvation shell dynamics and overall diffusion behavior, impacting macroscopic transport properties.

Understanding these molecular-scale mechanisms is key to optimizing DEE formulations for different battery chemistries. This work provides fundamental insights into the structure and property relationships of DEEs, enabling their rational design for safer, more efficient energy storage technologies.

deep eutectic electrolyte

electrolyte

xTB

heterogeneity

molecular dynamics

multivalent

deep eutectic solvent

tight-binding

local structure

PJ Salen

Author

Mirna Alhanash

Chalmers, Physics, Materials Physics

Molecular-level heterogeneity in deep eutectic electrolytes

Physical Chemistry Chemical Physics,;Vol. 27(2025)p. 20074-20083

Journal article

M. Alhanash, C. Cruz, and P. Johansson. Molecular Insights into Calcium-Based Deep Eutectic Electrolytes for Next- Generation Batteries.

Nanako Ito, Tomooki Hosaka, Mirna Alhanash, Ryoichi Tatara, Zachary T. Gossage, Patrik Johansson, and Shinichi Komaba. Urea-based Ternary Deep Eutectic Electrolytes for Lithium Metal Battery.

Stable NaTFSI-Based Highly Concentrated Electrolytes for Na-Ion and Na-O<inf>2</inf> Batteries

Journal of Physical Chemistry C,;Vol. 129(2025)p. 9259-9270

Journal article

Design av nästa generations batterielektrolyter

Batterier driver telefoner, bärbara datorer och elfordon, och deras prestanda och säkerhet beror i hög grad på elektrolyten. Denna avhandling undersöker saltrika elektrolyter, djupa eutektiska elektrolyter och högkoncentrerade elektrolyter för litium- och kalciumbaserade batterier. Vi använder kvantbaserade beräkningar och molekyldynamiksimuleringar för att koppla den molekylära världen till den makroskopiska.
I avhandlingen studerar vi molekylär heterogenitet (MLH), där vätskor inte är helt homogena. Den lokala strukturen och rörelsen kring joner varierar mellan olika områden och över tid, solvationsskal skiljer sig åt, vätebindningsnätverk skiftar, och aggregationer bildas och upplöses.

Designing Next-Generation Battery Electrolytes
Batteries power phones, laptops, and electric vehicles, and their performance and safety depend strongly on the electrolyte, the medium that carries charge. This thesis examines salt-rich electrolytes, deep eutectic electrolytes, and highly concentrated electrolytes for lithium- and calcium-based batteries. Quantum-based and classical molecular dynamics simulations are used to explain physical properties by understanding molecular behavior. This work also studies molecular-level heterogeneity (MLH) where liquids are not perfectly uniform, the local structure and motion around ions vary from place to place and over time, solvation shells differ, hydrogen-bond networks shift, and aggregates form and dissolve. The study maps how anion size and symmetry, coordination patterns, and hydrogen bonding connect to macroscopic behaviour.
These relationships guide which molecular features should be tuned to achieve safer, less volatile, and more efficient electrolytes, supporting more reliable next-generation lithium and calcium batteries.

Subject Categories (SSIF 2025)

Materials Chemistry

Condensed Matter Physics

Other Physics Topics

Areas of Advance

Energy

Materials Science

DOI

10.63959/chalmers.dt/5751

ISBN

978-91-8103-293-2

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5751

Publisher

Chalmers

PJ Salen

More information

Latest update

10/3/2025