Molecular-Level Insights into Next-Generation Battery Electrolytes
Doktorsavhandling, 2025
To bridge this gap, we employ tight-binding and classical molecular dynamics simulations to investigate the local coordination environment, hydrogen bonding networks, and molecular-level ordering, especially in DEEs. By focusing on the interplay between hydrogen bond donors and different anion sizes and symmetries in hydrogen bond acceptors, we systematically explore how molecular interactions influence solvation structure and ion mobility. Our findings suggest that anion symmetry and size, together with hydrogen bonding strength, govern the solvation shell dynamics and overall diffusion behavior, impacting macroscopic transport properties.
Understanding these molecular-scale mechanisms is key to optimizing DEE formulations for different battery chemistries. This work provides fundamental insights into the structure and property relationships of DEEs, enabling their rational design for safer, more efficient energy storage technologies.
deep eutectic electrolyte
electrolyte
xTB
heterogeneity
molecular dynamics
multivalent
deep eutectic solvent
tight-binding
local structure
Författare
Mirna Alhanash
Chalmers, Fysik, Materialfysik
Molecular-level heterogeneity in deep eutectic electrolytes
Physical Chemistry Chemical Physics,;Vol. 27(2025)p. 20074-20083
Artikel i vetenskaplig tidskrift
M. Alhanash, C. Cruz, and P. Johansson. Molecular Insights into Calcium-Based Deep Eutectic Electrolytes for Next- Generation Batteries.
2023 Roadmap on molecular modelling of electrochemical energy materials
JPhys Energy,;Vol. 5(2023)
Reviewartikel
Nanako Ito, Tomooki Hosaka, Mirna Alhanash, Ryoichi Tatara, Zachary T. Gossage, Patrik Johansson, and Shinichi Komaba. Urea-based Ternary Deep Eutectic Electrolytes for Lithium Metal Battery.
Stable NaTFSI-Based Highly Concentrated Electrolytes for Na-Ion and Na-O<inf>2</inf> Batteries
Journal of Physical Chemistry C,;Vol. 129(2025)p. 9259-9270
Artikel i vetenskaplig tidskrift
Batterier driver telefoner, bärbara datorer och elfordon, och deras prestanda och säkerhet beror i hög grad på elektrolyten. Denna avhandling undersöker saltrika elektrolyter, djupa eutektiska elektrolyter och högkoncentrerade elektrolyter för litium- och kalciumbaserade batterier. Vi använder kvantbaserade beräkningar och molekyldynamiksimuleringar för att koppla den molekylära världen till den makroskopiska.
I avhandlingen studerar vi molekylär heterogenitet (MLH), där vätskor inte är helt homogena. Den lokala strukturen och rörelsen kring joner varierar mellan olika områden och över tid, solvationsskal skiljer sig åt, vätebindningsnätverk skiftar, och aggregationer bildas och upplöses.
Batteries power phones, laptops, and electric vehicles, and their performance and safety depend strongly on the electrolyte, the medium that carries charge. This thesis examines salt-rich electrolytes, deep eutectic electrolytes, and highly concentrated electrolytes for lithium- and calcium-based batteries. Quantum-based and classical molecular dynamics simulations are used to explain physical properties by understanding molecular behavior. This work also studies molecular-level heterogeneity (MLH) where liquids are not perfectly uniform, the local structure and motion around ions vary from place to place and over time, solvation shells differ, hydrogen-bond networks shift, and aggregates form and dissolve. The study maps how anion size and symmetry, coordination patterns, and hydrogen bonding connect to macroscopic behaviour.
These relationships guide which molecular features should be tuned to achieve safer, less volatile, and more efficient electrolytes, supporting more reliable next-generation lithium and calcium batteries.
Ämneskategorier (SSIF 2025)
Materialkemi
Den kondenserade materiens fysik
Annan fysik
Styrkeområden
Energi
Materialvetenskap
DOI
10.63959/chalmers.dt/5751
ISBN
978-91-8103-293-2
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5751
Utgivare
Chalmers
PJ Salen