Data limitations hinder the development of AI-based decision support for the treatment of antibiotic-resistant bacteria
Other text in scientific journal, 2025

No abstract available

data limitations

antimicrobial resistance

decision support

machine learning

AI

bacterial infections

Author

Anna Johnning

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

University of Gothenburg

Fraunhofer-Chalmers Centre

Styrbjörn Käll

Semcon

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

University of Gothenburg

Erik Kristiansson

Chalmers, Mathematical Sciences, Applied Mathematics and Statistics

University of Gothenburg

Future Microbiology

1746-0913 (ISSN) 1746-0921 (eISSN)

Vol. 20 15 993-995

Nya elektrokemiska biosensorer och artificiell intelligens för förbättrad diagnostik avledprotesinfektioner orsakade av antibiotikaresistenta bakterier

Swedish Research Council (VR) (2023-01685), 2024-01-01 -- 2026-12-31.

Clinical evaluation of AI-driven decision support for the treatment of infections caused by antibiotic-resistant bacteria

Swedish Research Council (VR) (2024-06177), 2024-12-01 -- 2026-11-30.

Nya elektrokemiska biosensorer och artificiell intelligens för förbättrad diagnostik avledprotesinfektioner orsakade av antibiotikaresistenta bakterier

Swedish Research Council (VR) (2023-01685), 2024-01-01 -- 2026-12-31.

Datadriven Life Science 2024-2026, fas 2

Knut and Alice Wallenberg Foundation (2024.0159), 2024-04-01 -- 2026-03-31.

Subject Categories (SSIF 2025)

Clinical Medicine

Basic Medicine

Health Sciences

DOI

10.1080/17460913.2025.2572907

PubMed

41071030

More information

Latest update

12/13/2025