An empirical view of the extended atmosphere and inner envelope of the asymptotic giant branch star R Doradus II. Constraining the dust properties with radiative transfer modelling
Journal article, 2025

Context. Mass loss in oxygen-rich asymptotic giant branch (AGB) stars remains a longstanding puzzle, as the dust species detected around these stars appear too transparent to drive winds through the absorption of radiation alone. The current paradigm consists of outflows driven by photon scattering and requires relatively large grains (∼0.3 μm). Whether the necessary number of grains with the required scattering properties exist around AGB stars remains to be determined empirically. Aims. We test whether the dust grains observed around the oxygen-rich AGB star R Doradus can drive its stellar wind by combining, for the first time, polarimetric constraints with elemental abundance limits and force balance calculations. We examine Fe-free silicates (MgSiO3), aluminium oxide (Al2O3), and Fe-bearing silicates (MgFeSiO4) to determine whether any dust species can generate sufficient radiative pressure under physically realistic conditions. Methods. We analysed high-angular-resolution polarimetric observations obtained with SPHERE/ZIMPOL at the Very Large Telescope (VLT) and modelled the circumstellar dust using the radiative transfer code RADMC-3D. Dust optical properties were computed using Optool for both Mie and the distribution of hollow spheres (DHS) scattering theories. By systematically exploring a six-dimensional parameter space, we derived constraints on dust grain sizes, density profiles, and wavelength-dependent stellar radii. For models that successfully fit the observations, we analysed the results taking into consideration recent models for the gas density distribution around R Dor, and applied a multi-criteria zone analysis incorporating gas-depletion constraints and radiation pressure thresholds to assess dust-driven wind viability. Results. We find sub-micron MgSiO3 and Al2O3 grains (up to 0.1 μm) regardless of scattering theory considered, and a two-layer dust envelope with steep density profiles (r−3.4 to r−4.1). Despite matching observed scattered-light patterns, these grains generate insufficient radiative force under physically realistic gas-to-dust mass ratios, even when assuming complete elemental depletion. Silicates containing Fe could theoretically provide adequate force, but would sublimate in critical acceleration regions and require implausibly high silicon-depletion levels. Conclusions. Our findings for R Doradus show insufficient radiation pressure from scattering on grains, suggesting that dust alone cannot drive the wind in this star and that additional mechanisms may be required.

radiative transfer

stars: AGB and post-AGB

Author

Thiébaut-Antoine Schirmer

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Theo Khouri

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Wouter Vlemmings

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Gunnar Nyman

University of Gothenburg

Institution of Chemistry at Gothenburg University

Matthias Maercker

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Ramlal Unnikrishnan Nair

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Behzad Bojnordiarbab

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Kirsten Knudsen

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Susanne Aalto

Chalmers, Space, Earth and Environment, Astronomy and Plasmaphysics

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 704 A4

The Origin and Fate of Dust in Our Universe

Knut and Alice Wallenberg Foundation (KAW 2019.0443), 2020-06-01 -- 2023-05-31.

Knut and Alice Wallenberg Foundation (KAW 2020.0081), 2021-07-01 -- 2026-06-30.

Subject Categories (SSIF 2025)

Astronomy, Astrophysics, and Cosmology

DOI

10.1051/0004-6361/202556884

More information

Latest update

12/12/2025