Frugal RIS-aided 3D Localization with CFO under LoS and NLoS Conditions
Journal article, 2025

In this paper, we investigate 3-D localization and frequency synchronization with multiple reconfigurable intelligent surfaces (RISs) in the presence of carrier frequency offset (CFO) for a stationary user equipment (UE). In line with the 6G goals of sustainability and efficiency, we focus on a frugal communication scenario with minimal spatial and spectral resources (i.e., narrowband single-input single-ouput system), considering both the presence and blockage of the line-of-sight (LoS) path between the base station (BS) and the UE. We design a generalized likelihood ratio test (GLRT)-based LoS detector, channel parameter estimation and localization algorithms, with varying complexity. To verify the efficiency of our estimators, we compare the root mean-squared error (RMSE) to the Cramér- Rao bound (CRB) of the unknown parameters. We also evaluate the sensitivity of our algorithms to the presence of uncontrolled multi-path components (MPC) and various levels of CFO. Simulation results showcase the effectiveness of the proposed algorithms under minimal hardware and spectral requirements, and a wide range of operating conditions, thereby confirming the viability of RIS-aided frugal localization in 6G scenarios.

frugal localization

joint localization and frequency synchronization

Reconfigurable intelligent surfaces

single-input single-output

Author

Yasaman Ettefagh

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Musa Furkan Keskin

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

Kamran Keykhosravi

Ericsson

G. Seco-Granados

Universitat Autonoma de Barcelona (UAB)

Henk Wymeersch

Chalmers, Electrical Engineering, Communication, Antennas and Optical Networks

IEEE Transactions on Vehicular Technology

0018-9545 (ISSN) 1939-9359 (eISSN)

Vol. In Press

Localization and Sensing for Perceptive Cell-Free Networks Towards 6G

Swedish Research Council (VR) (2024-04390), 2025-01-01 -- 2028-12-31.

Hardware-aware Integrated Localization and Sensing for Communication Systems

Swedish Research Council (VR) (2022-03007), 2023-01-01 -- 2026-12-31.

6G DISAC

European Commission (EC) (101139130-6G-DISAC), 2024-01-01 -- 2026-12-31.

Subject Categories (SSIF 2025)

Communication Systems

Signal Processing

DOI

10.1109/TVT.2025.3638972

More information

Latest update

1/24/2026