On a volume averaged measure of macroscopic reinforcement slip in two-scale modeling of reinforced concrete
Journal article, 2020

A two-scale model for reinforced concrete, in which the large-scale problem formulation is enriched by an effective reinforcement slip variable, is derived from the single-scale model describing the response of plain concrete, reinforcement steel, as well as the bond between them. The subscale problem on the Representative Volume Element (RVE) is correspondingly defined as finding the response of the RVE subjected to effective variables (strain, slip, and slip gradient) imposed from the large-scale.  A novel volumetric definition of effective reinforcement slip and its gradient is devised, and the corresponding subscale problem is formulated.  The newly-defined effective variables are imposed on the RVE in a weak sense via Lagrange multipliers. The response of the RVEs of different sizes was investigated by means of pull-through tests, and the novel boundary condition type was used in FE^2 analyses of a deep beam. Locally, prescribing the macroscopic reinforcement slip and its gradient in the proposed manner resulted in reduced RVE-size dependency of effective work conjugates, which allows for more objective description of reinforcement slip in two-scale modelling of reinforced concrete. Globally, this formulation produced more consistent amplitudes of effective slip fluctuations, as well as more consistent maximum crack width predictions.

multiscale

reinforced concrete

bond-slip

computational homogenisation

cracking

Lagrange multipliers

Author

Adam Sciegaj

Chalmers, Architecture and Civil Engineering, Structural Engineering

Fredrik Larsson

Chalmers, Industrial and Materials Science, Material and Computational Mechanics

Karin Lundgren

Chalmers, Architecture and Civil Engineering, Structural Engineering

Kenneth Runesson

Chalmers, Industrial and Materials Science, Material and Computational Mechanics

International Journal for Numerical Methods in Engineering

0029-5981 (ISSN) 1097-0207 (eISSN)

Vol. 121 8 1822-1846

Multiscale modelling of reinforced concrete structures

Swedish Research Council (VR) (2014-5168), 2015-01-01 -- 2018-12-31.

Subject Categories

Applied Mechanics

Other Civil Engineering

Areas of Advance

Building Futures (2010-2018)

Materials Science

Infrastructure

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1002/nme.6288

More information

Latest update

4/29/2020