Enriched microbial communities for ammonium and nitrite removal from recirculating aquaculture systems
Journal article, 2022

The aim of this study was the enrichment of high-performance microbial communities in biofilters for removal of ammonium and nitrite from aquaculture water. Ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were enriched from different environmental water samples. The microbial communities with higher ammonium and nitrite removal activity were selected and adapted to different temperatures [9 °C, 15 °C, room temperature (25 °C), and 30 °C]. The expression of genes involved in nitrification including ammonia monooxygenase (AMO) and nitrite oxidoreductase (NXR) were measured in temperature-adapted AOB and NOB microbiomes. The microbial species present in the selected microbiomes were identified via 16s rRNA sequencing. The microbial communities containing Nitrosomonas oligotropha and Nitrobacter winogradskyi showed the highest ammonium and nitrite removal activity at all temperatures used for adaptation. Furthermore, the microbial communities do not contain any pathogenic bacteria. They also exhibited the highest expression of AMO and NXR genes. Using the enriched microbial communities, we achieved a 288% and 181% improvement in ammonium and nitrite removal over the commonly used communities in biofilters at 9 °C, respectively. These results suggest that the selected microbiomes allowed for a significant improvement of water quality in a recirculating aquaculture system (RAS).

Temperature adaptation

Nitrobacter winogradskyi

Aquaculture biofilter water

AOB and NOB Microbiome enrichment

Nitrosomonas oligotropha

Author

Alireza Neissi

Nuclear Science and Technology Research Institute

Gholamreza Rafiee

University of Tehran

Shadi Rahimi

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Hamid Farahmand

University of Tehran

Santosh Pandit

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Ivan Mijakovic

Chalmers, Biology and Biological Engineering, Systems and Synthetic Biology

Technical University of Denmark (DTU)

Chemosphere

0045-6535 (ISSN) 18791298 (eISSN)

Vol. 295 133811

Subject Categories

Microbiology

Water Treatment

DOI

10.1016/j.chemosphere.2022.133811

PubMed

35124092

More information

Latest update

2/23/2022