Strong perpendicular anisotropic ferromagnet Fe3GeTe2/graphene van der Waals heterostructure
Journal article, 2023

Two-dimensional magnets offer a new platform for exploring fundamental properties in van der Waals (vdW) heterostructures and their device applications. Here, we investigated heterostructure devices of itinerant metallic vdW ferromagnet Fe3GeTe2 (FGT) with monolayer chemical vapor deposited graphene. The anomalous Hall effect measurements of FGT Hall-bar devices exhibit robust ferromagnetism with strong perpendicular anisotropy at low temperatures. The electrical transport properties measured in FGT/graphene heterostructure devices exhibit a tunneling transport with weak temperature dependence. We assessed the suitability of such FGT/graphene heterostructures for spin injection and detection and investigated the presence of FGT on possible spin absorption and spin relaxation in the graphene channel. These findings will be useful for engineering spintronic devices based on vdW heterostructures.

spin absorption

graphene

spin transport

Fe GeTe 3 2

van der Waals heterostructure

Author

Bing Zhao

2D-Tech

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Bogdan Karpiak

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

Anamul Md Hoque

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

2D-Tech

Pallavi Dhagat

Oregon State University

Saroj Prasad Dash

Chalmers, Microtechnology and Nanoscience (MC2), Quantum Device Physics

2D-Tech

Journal of Physics D: Applied Physics

0022-3727 (ISSN) 13616463 (eISSN)

Vol. 56 9 094001

2D material-based technology for industrial applications (2D-TECH)

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

Graphene Core Project 3 (Graphene Flagship)

European Commission (EC) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

2Dimensional van der Waals Spin-Orbit Torque Technology

Swedish Research Council (VR) (2021-05925), 2021-12-01 -- 2024-11-30.

Spintronics with Topological Quantum Material and Magnetic Heterostructures

Swedish Research Council (VR) (2021-04821), 2022-01-01 -- 2025-12-31.

Subject Categories

Other Chemical Engineering

Other Materials Engineering

Condensed Matter Physics

DOI

10.1088/1361-6463/acb801

More information

Latest update

2/12/2024