Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems
Journal article, 2009

We present the first nucleobase analog fluorescence resonance energy transfer (FRET)-pair. The pair consists of tC O , 1,3-diaza-2- oxophenoxazine, as an energy donor and the newly developed tC nitro , 7-nitro-1,3-diaza-2-oxophenothiazine, as an energy acceptor. The FRET-pair successfully monitors distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid stacking of the two base analogs, and consequently excellent control of their exact positions and orientations, results in a high control of the orientation factor and hence very distinct FRET changes as the number of bases separating tC O and tCnitro is varied. A set of DNA strands containing the FRET-pair at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from orientation-changes using FRET. In combination with the good nucleobase analog properties, this points toward detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement of FRET-pair chromophores inside the base stack will be a great advantage in studies where other (biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid experimental support to the dependence of energy transfer efficiency on orientation of involved transition dipoles as predicted by the Forster theory. © 2009 American Chemical Society.

Author

Karl Börjesson

Chalmers, Chemical and Biological Engineering, Physical Chemistry

S. Preus

University of Copenhagen

Afaf El-Sagheer

Suez Canal University

University of Southampton

T. Brown

University of Southampton

Bo Albinsson

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Marcus Wilhelmsson

Chalmers, Chemical and Biological Engineering, Physical Chemistry

Journal of the American Chemical Society

0002-7863 (ISSN) 1520-5126 (eISSN)

Vol. 131 12 4288-4293

Subject Categories

Physical Chemistry

Analytical Chemistry

Organic Chemistry

DOI

10.1021/ja806944w

More information

Latest update

5/8/2018 1