Christopher Zach
Christopher Zach är forskningsprofessor i forskargruppen Digitala bildsystem och bildanalys.
Visar 33 publikationer
Text in the dark: Extremely low-light text image enhancement
When IC meets text: Towards a rich annotated integrated circuit text dataset
Text Prompt Augmentation for Zero-shot Out-of-Distribution Detection
Deep Nearest Neighbors for Anomaly Detection in Chest X-Rays
Two Tales of Single-Phase Contrastive Hebbian Learning
Learned Trajectory Embedding for Subspace Clustering
Fully Variational Noise-Contrastive Estimation
Cycle-Object Consistency for Image-to-Image Domain Adaptation
Deep-learning-based out-of-distribution data detection in visual inspection images
Decentralized Training of 3D Lane Detection with Automatic Labeling Using HD Maps,
Dual Propagation: Accelerating Contrastive Hebbian Learning with Dyadic Neurons
GEN: Pushing the Limits of Softmax-Based Out-of-Distribution Detection
Extremely Low-light Image Enhancement with Scene Text Restoration
Effortless Training of Joint Energy-Based Models with Sliced Score Matching
CyEDA : CYCLE OBJECT EDGE CONSISTENCY DOMAIN ADAPTATION
Industrial X-ray Image Analysis with Deep Neural Networks Robust to Unexpected Input Data
AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural Networks
Data Augmentation via Neural-Style-Transfer for Driver Distraction Recognition
Joint Energy-based Model for Deep Probabilistic Regression
Robust Fitting with Truncated Least Squares: A Bilevel Optimization Approach
Analysis of industrial X-ray computed tomography data with deep neural networks
AUTOENCODER-BASED ANOMALY DETECTION IN INDUSTRIAL X-RAY IMAGES
Progressive Batching for Efficient Non-linear Least Squares
BabelCalib: A Universal Approach to Calibrating Central Cameras
Contrastive learning for lifted networks
Lifted Regression/Reconstruction Networks
A Graduated Filter Method for Large Scale Robust Estimation
SG-VAE: Scene Grammar Variational Autoencoder to Generate New Indoor Scenes
Seeing Behind Things: Extending Semantic Segmentation to Occluded Regions
Pareto meets huber: Efficiently avoiding poor minima in robust estimation
Ladda ner publikationslistor
Du kan ladda ner denna lista till din dator.
Filtrera och ladda ner publikationslista
Som inloggad användare hittar du ytterligare funktioner i MyResearch.
Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:
Zotero Connector
Mendeley Web Importer
Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.
Visar 4 forskningsprojekt
Learning and Leveraging Rich Priors for Factorization Problems
Energy-based models for supervised deep neural networks and their applications
AI for Analysis for Naturalistic Driving Data
Automatic data analysis within non-destructive evaluation (ADA-NDE)