Adaptiv neural styrning för framtida förnyelsebara bränslen
Forskningsprojekt, 2020
– 2021
The sustainable fuel resources are urgently required to the replace of the conventional fossil fuels. Alternate fuels including alcohols and biodiesel have been introduced as an important solution. The goal of this project is to develop a new engine control system with the ability to perform online recalibration of the engine control parameters in order to optimize the combustion efficiency together with minimizing the exhaust emissions. A trained and adaptive artificial neural network (ANN) model to predict different fuel qualities is the core of this proposal. By implementing such an online fuel quality sensor, it will provide the ability of robust engine operation with respect to different fuel quality, fuel variety and also considering the variation in combustion due to engine wear and aging. Also, the proposed technique will be used to predict emissions (e.g. NOX concentration from readily available engine operating parameters, possibly eliminating the need for physical sensing and the cost associated with it.
Deltagare
Jonas Sjöblom (kontakt)
Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem
Ahfaz Ahmed
Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem
Morteza Haghir Chehreghani
Chalmers, Data- och informationsteknik, Data Science
Samarbetspartners
Kompetenscentrum i Förbränningsmotorteknik (CERC)
Göteborg, Sweden
Neste Oy
Espoo, Finland
Finansiering
Mekanik och maritima vetenskaper
Finansierar Chalmers deltagande under 2020–2021
Chalmers
Finansierar Chalmers deltagande under 2020–2021
Neste Oy
Finansierar Chalmers deltagande under 2020–2021
Relaterade styrkeområden och infrastruktur
Hållbar utveckling
Drivkrafter
Transport
Styrkeområden