Robustly and Optimally Controlled Training Of neural Networks II (OCTON II)
Forskningsprojekt, 2020
– 2025
This project aims at focusing on the development novel methods that accounts for non-traditional training objectives (other than mean square prediction error) and corrupted data sequence. This project is expected to result in faster and more accurate training solutions (classification, parameter estimation, short time prediction, tracking) than the currently available ones. The methods developed are application free and concentrates on the triplet of interpretability, robustness and network optimization via deeplearners (DNN).
Deltagare
Vincent Szolnoky (kontakt)
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Rebecka Jörnsten
Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik
Balázs Adam Kulcsár
Chalmers, Elektroteknik, System- och reglerteknik
Finansiering
Centiro
Finansierar Chalmers deltagande under 2020–2025
Relaterade styrkeområden och infrastruktur
Transport
Styrkeområden