A linear nonconforming finite element method for Maxwell's equations in two dimensions. Part I: Frequency domain
Artikel i vetenskaplig tidskrift, 2010

We suggest a linear nonconforming triangular element for Maxwell’s equations and test it in the context of the vector Helmholtz equation. The element uses discontinuous normal fields and tangential fields with continuity at the midpoint of the element sides, an approximation related to the Crouzeix–Raviart element for Stokes. The element is stabilized using the jump of the tangential fields, giving us a free parameter to decide. We give dispersion relations for different stability parameters and give some numerical examples, where the results converge quadratically with the mesh size for problems with smooth boundaries. The proposed element is free from spurious solutions and, for cavity eigenvalue problems, the eigenfrequencies that correspond to well-resolved eigenmodes are reproduced with the correct multiplicity.

Interior penalty method

Nonconforming method

Maxwell’s equations

Stabilized methods

Finite element

Författare

Peter F G Hansbo

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Thomas Rylander

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik, Signalbehandling

Journal of Computational Physics

0021-9991 (ISSN) 1090-2716 (eISSN)

Vol. 229 18 6534-6547

Ämneskategorier

Beräkningsmatematik

Annan elektroteknik och elektronik

DOI

10.1016/j.jcp.2010.05.009

Mer information

Skapat

2017-10-07