Study of the Pluronic-Silica Interaction in Synthesis of Mesoporous Silica under Mild Acidic Conditions
Artikel i vetenskaplig tidskrift, 2010

The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not Sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous Silica under mild acidic conditions, pH 2-5, and the aim is to shed light oil the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is First hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both oil the temperature and oil the little between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.


Andreas Sundblom

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Anders Palmqvist

Kompetenscentrum katalys

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Krister Holmberg

Chalmers, Kemi- och bioteknik, Teknisk ytkemi

Kompetenscentrum katalys


07437463 (ISSN) 15205827 (eISSN)

Vol. 26 3 1983-1990


Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)



Fysikalisk kemi


Innovation och entreprenörskap



Mer information