An electrowetting-based microfluidic platform for magnetic bioassays
Paper i proceeding, 2010

Here we present our recent work on a droplet-based microfluidic device for manipulating microliter-sized droplets. By replacing the formerly used common dielectric SiO2 with Si3N4 and applying a 33 nm thick Teflon top layer to create a hydrophobic surface, we successfully lowered the actuation voltage from 450 V to 50 Vdc/40 Vac. Sputtered HfO2 with high dielectric constant was also investigated as an insulator, which could reproducibly yield thin defect-free insulation layers and lower the actuation voltage to less than 40 V.

Digital microfluidics

High-k dielectric

Hafnium dioxide (HfO2)

ElectroWetting-On-Dielectric (EWOD)

Silicon nitride (Si3N4)

Superconducting Quantum Interference Device (SQUID)

Författare

S Chang

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Vincent Schaller

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Bahman Raeissi

Chalmers, Teknisk fysik, Fysikalisk elektronik

Alexei Kalaboukhov

Chalmers University of Technology

Justin Schneiderman

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Fredrik Öisjöen

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Aldo Jesorka

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Andrea Prieto Astalan

Imego AB - The Institute of Micro and Nanotechnology

Christer Johansson

Imego AB - The Institute of Micro and Nanotechnology

Peter Enoksson

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Dag Winkler

Chalmers, Mikroteknologi och nanovetenskap (MC2)

Anke Sanz-Velasco

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2010, 3-7 Oktober, Groningen, Neterlands

Vol. 2 1331-1333

Styrkeområden

Transport

Produktion

Ämneskategorier

Annan teknik

Elektroteknik och elektronik

Mikrobiologi inom det medicinska området

ISBN

978-161839062-2