Activation Energies in Computational Chemistry - A case study
Kapitel i bok, 2011

A straight-forward way to learn how different complementary properties of a catalyst control a resulting activation energy is proposed within the frame work of Density Functional Theory. It is argued that in special cases the activation energy can be approximated from the crossing of the two vibrational modes’ harmonic oscillator potentials corresponding to the reactant and the product, respectively. The procedure is argued to be applicable in cases were traditional transition state search algorithms such as the synchronous transit or the nudged elastic band methods are of limited use. The constraints of the present approach include accessibility of reactant and product structures as well as availability of normal modes pointing towards the transition state. The usefulness of the proposed procedure is demonstrated for the O-O bond formation step in the water oxidation reaction (OER). A comparative study of the activation energy for said reaction is understaken, employing (i) a molecular manganese dimer, (ii) an embedded manganese dimer, and (iii) an embedded cobalt dimer. In case of the two latter, an MgOx(OH)y is used as support. It is shown how the activation barrier for said reaction step is influenced by mainly two factors, (a) the flexibility of a catalyst and (b) the equilibrium O—O distance of the dioxo- species. It is demonstrated how in case of a flexible molecular catalyst, the influence of the O—O distance is negliable, while it is decisive to the activation energy in case of a more stiff embedded catalyst.

water oxidation

oxygen evolution

catalysis

electrocatalysis

activation energy

DFT

transition metal oxides

Författare

Michael Busch

Göteborgs universitet

Elisabet Ahlberg

Göteborgs universitet

Itai Panas

Chalmers, Kemi- och bioteknik, Oorganisk miljökemi

Rate Constant Calculation of Thermal Reactions: Methods and Applications, Herbert DaCosta (Ed.), John Wiley & Sons

ASAP-
9780470582305 (ISBN)

Ämneskategorier

Kemiska processer

Teoretisk kemi

DOI

10.1002/9781118166123.ch4

ISBN

9780470582305

Mer information

Skapat

2017-10-08