Hydrogen Bond Induced Nonmonotonic Composition Behavior of the Glass Transition in Aqueous Binary Mixtures
Artikel i vetenskaplig tidskrift, 2011

The glass transition temperature, T(g), of a binary mixture commonly varies monotonically between the T(g)s of its two components. However, mixtures of strongly associating liquids can instead exhibit a nonmonotonic T(g) variation. The origins of such nonideal mixing behavior have often been correlated with composition dependent structural variations. For binary mixtures between a hydrogen- (H-) bonded liquid and water, however, such behavior is generally not well understood. The ubiquity and importance of aqueous mixtures both in nature and in man-made applications stresses the needed for a better understanding. We here demonstrate nonmonotonic T(g) variations in binary mixtures of n-propylene glycol monomethyl ethers (nPGMEs) and water, where the composition dependent T(g) show maxima within an intermediate composition range. We show that these T(g) maxima correspond to crossovers in the composition dependence of the step amplitude in the isobaric heat capacity at T(g). We further demonstrate that the observed effects are caused by H-bond interactions involving the nPGME hydroxyl group. We can account for our obervations using a simple model based on two effects due to the added water: (i) an H-bond induced formation of effective relaxing entities and (ii) a plasticizing effect at high water contents.

1993

entropy

relaxation

former

v65

water solutions

estrelski sj

temperature

dynamics

liquid transition

p661

vapor

alcohols

Författare

Johan Sjöström

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Johan Mattsson

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Rikard Bergman

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Jan Swenson

Chalmers, Teknisk fysik, Kondenserade materiens fysik

Journal of Physical Chemistry B

1520-6106 (ISSN) 1520-5207 (eISSN)

Vol. 115 33 10013-10017

Ämneskategorier

Fysik

DOI

10.1021/jp2024186

Mer information

Skapat

2017-10-07