Increased migration in host–pathogen metapopulations can cause host extinction
Artikel i vetenskaplig tidskrift, 2012

There are at least two potentially counteracting effects of migration in host–pathogen metapopulations. On the one hand increased migration leads to increased colonization of empty habitats by healthy hosts; on the other hand migrants can carry infectious diseases to susceptible populations. Earlier metapopulation models have found that the beneficial effects of increasing migration (reduced infection) are likely to dominate, and a general recommendation for managers of endangered metapopulations has been to increase connectivity between habitat patches. We extend the model framework to simultaneously allow for (1) Allee effects in host colonization rate, (2) spillover of pathogens from a second host species, and (3) differential colonization success by infected and healthy hosts. We find that the dynamics of a host–pathogen system can be highly sensitive to increased migration rates. Allee effects make host populations vulnerable to spillover of pathogens from other hosts, and metapopulation extinction can emerge from seemingly stable situations of endemic coexistence. Increasing connectivity in endangered metapopulations can be a risky management action unless the details of the biology of the host–pathogen system are known.

Extinction risk

Allee effect



Spill over


Karin C. Harding

Göteborgs universitet

M. Begon

University of Liverpool

Anders Eriksson

Göteborgs universitet

Bernt Wennberg

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Journal of Theoretical Biology

0022-5193 (ISSN) 1095-8541 (eISSN)

Vol. 298 1-7


Biologiska vetenskaper


Livsvetenskaper och teknik (2010-2018)



Mer information

Senast uppdaterat