Wind turbine drive train vibration with focus on gear dynamics under nondeterministic loads
Paper i proceeding, 2012

In present-day, the engineering challenge around a drive train design for a wind turbine is not only to enhance system reliability but also to reduce the turbine top mass. These requirements together with the trend of upscaling affect many system characteristics and parameters. The proposed contribution presents a model to study torsional drive train vibration dynamics of a generic indirect drive multi-MW wind turbine. The main focus lies on developing a fully parameterized computational model of a multi-stage gearbox which fulfills the requirement of a proper gear dynamic representation appropriate for multibody formalism as well as the requirement to be computationally efficient. Two different strategies for modeling the gear contact are studied and compared in time domain. An analysis of a multi-stage gearbox together with a generator load and a turbine specific nondeterministic excitation was carried out. It is believed that the obtained results will help designer to improve drive train components and to enhance wind turbine reliability and cost efficiency.

drive train

Wind turbine

nondeterministic load

vibration dynamics



Stephan Struggl


Svensk Vindkraftstekniskt Centrum (SWPTC)

Viktor Berbyuk

Svensk Vindkraftstekniskt Centrum (SWPTC)


Håkan Johansson

Svensk Vindkraftstekniskt Centrum (SWPTC)


Proceedings, International Conference on Noise and Vibration Engineering, ISMA2012; International Conference on Uncertainty in Structural Dynamics, USD2012. Editors : P. Sas, D. Moens, S. Jonckheere. KU Leuven (Belgium), 17 - 19 September 2012

9789073802896 (ISBN)



Teknisk mekanik


Hållbar utveckling



Mer information

Senast uppdaterat