Modelling of organic aerosols over Europe (2002-2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol
Artikel i vetenskaplig tidskrift, 2012

A new organic aerosol module has been implemented into the EMEP chemical transport model. Four different volatility basis set (VBS) schemes have been tested in long-term simulations for Europe, covering the six years 2002-2007. Different assumptions regarding partitioning of primary organic aerosol and aging of primary semi-volatile and intermediate volatility organic carbon (S/IVOC) species and secondary organic aerosol (SOA) have been explored. Model results are compared to filter measurements, aerosol mass spectrometry (AMS) data and source apportionment studies, as well as to other model studies. The present study indicates that many different sources contribute significantly to organic aerosol in Europe. Biogenic and anthropogenic SOA, residential wood combustion and vegetation fire emissions may all contribute more than 10% each over substantial parts of Europe. This study shows smaller contributions from biogenic SOA to organic aerosol in Europe than earlier work, but relatively greater anthropogenic SOA. Simple VBS based organic aerosol models can give reasonably good results for summer conditions but more observational studies are needed to constrain the VBS parameterisations and to help improve emission inventories. The volatility distribution of primary emissions is one important issue for further work. Emissions of volatile organic compounds from biogenic sources are also highly uncertain and need further validation. We can not reproduce winter levels of organic aerosol in Europe, and there are many indications that the present emission inventories substantially underestimate emissions from residential wood combustion in large parts of Europe.

tracer analysis

particulate matter

source apportionment

alpha-pinene

air-pollution

non-fossil carbon

mass-spectrometry

mexico-city

chemical-transport model

evaluation program emep

Författare

Robert Bergström

Göteborgs universitet

Hacd van der Gon

Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek (TNO)

A. S. H. Prevot

Paul Scherrer Institut

K. E. Yttri

Norsk institutt for luftforskning (NILU)

David Simpson

Chalmers, Rymd- och geovetenskap, Global miljömätteknik

Atmospheric Chemistry and Physics

1680-7316 (ISSN) 1680-7324 (eISSN)

Vol. 12 18 8499-8527

ModElling the Regional and Global Earth system (MERGE)

Lunds universitet (9945095), 2010-01-01 -- .

Ämneskategorier

Kemi

DOI

10.5194/acp-12-8499-2012

Mer information

Senast uppdaterat

2024-10-14