Investigation of Combined Supports for Cu-based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU)
Artikel i vetenskaplig tidskrift, 2013

The chemical-looping with oxygen uncoupling (CLOU) process is a novel solution for efficient combustion with inherent separation of carbon dioxide. The process uses a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor. In the fuel reactor, the metal oxide releases gas phase oxygen which oxidizes the fuel through normal combustion. In this study, Cu-based oxygen carrier materials that combine different supports of MgAl2O4, TiO2 and SiO2 are prepared and characterized with the objective of obtaining highly reactive and attrition resistant particles. The oxygen carrier particles were produced by spray-drying and were calcined at different temperatures ranging from 950 to 1030oC for 4 h. The chemical-looping performance of the oxygen carriers was examined in a batch fluidized-bed reactor in the temperature range of 900-950oC under alternating reducing and oxidizing conditions. The mechanical stability of the oxygen carriers was tested in a jet-cup attrition rig. All of the oxygen carriers showed oxygen uncoupling behaviour with oxygen concentrations close to equilibrium. During reactivity tests with methane, oxygen carriers with lower mechanical stability showed higher reactivity, yielding almost complete fuel conversion. Oxygen carrier materials based on support mixtures of MgAl2O4/TiO2, MgAl2O4/SiO2 and TiO2/SiO2 showed a combination of high mechanical stability, low attrition rates, good reactivity with methane and oxygen uncoupling behaviour.

CO2-capture

chemical-looping with oxygen

chemical-looping combustion (CLC)

Författare

Inaki Adanez-Rubio

CSIC - Instituto de Carboquimica (ICB)

Mehdi Arjmand

Chalmers, Kemi- och bioteknik, Oorganisk miljökemi

Henrik Leion

Chalmers, Kemi- och bioteknik, Oorganisk miljökemi

Pilar Gayan

CSIC - Instituto de Carboquimica (ICB)

Alberto Abad

CSIC - Instituto de Carboquimica (ICB)

Tobias Mattisson

Chalmers, Energi och miljö, Energiteknik

Anders Lyngfelt

Chalmers, Energi och miljö, Energiteknik

Energy & Fuels

0887-0624 (ISSN) 1520-5029 (eISSN)

Vol. 27 7 3918-3927

Ämneskategorier

Energiteknik

Kemiska processer

Kemiteknik

Styrkeområden

Energi

DOI

10.1021/ef401161s