Combining Variation Simulation With Thermal Expansion Simulation for Geometry Assurance
Artikel i vetenskaplig tidskrift, 2013

In every set of assembled products, there are geometrical variations and deviations from nominal dimensions. This can lead to products that are difficult to assemble or products not fulfilling functional or aesthetical requirements. In several industries, variation simulation is used to predict assembly variation in the development phase. This analysis is usually done under room temperature conditions only. However, for some materials, such as plastics, the thermal expansion can be significant in the intended environmental span of the product. In an assembly, this can lead to thermal stresses and parts that will deform. To avoid this problem, locating schemes need to be designed to allow for the right behavior while exposed to varying temperatures. In this work, the effect of thermal expansion is studied in the context of variation simulation. A virtual tool for this purpose is also presented. Two case studies from the automotive industry are used where the combined effect of thermal expansion and assembly variation is analyzed. It is shown that it may not be sufficient to simply add the result from thermal analysis to assembly variation. Hence, to assure the geometrical and functional quality of assembled products during usage variation simulations need to be combined with thermal expansion simulation.

thermal expansion

variation simulation

robust design


Samuel C Lorin

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Lars Lindkvist

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Rikard Söderberg

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Robert Sandboge

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Journal of Computing and Information Science in Engineering

1530-9827 (ISSN)

Vol. 13 3 artikel nr 031007- 031007


Hållbar utveckling




Datavetenskap (datalogi)



Mer information

Senast uppdaterat