Theory of a room-temperature silicon quantum dot device as a sensitive electrometer
Artikel i vetenskaplig tidskrift, 2004

We consider theoretically the use of a room-temperature silicon quantum dot based device for electrometer applications. The low power device includes two split gates that quantize the electronic energy levels in the emitter and collector regions. The base consists of a silicon quantum dot buried in silicon dioxide. The small size of the dot and quantization of the states in the leads combined to allow the device to operate at room temperature. The nonlinear current-voltage characteristics can be significantly altered by small changes to the potential of the split gates. Power dissipation in the device therefore changes with the split gate voltage, and this can be exploited in electrometer applications. A simple model of the power dissipated when the device is part of a microwave resonant inductor-resistor-capacitor tank circuit suggests that large changes in device power can be achieved by changing the gate voltage, thereby forming a measurable signal. We also demonstrate that the power dissipation in the device changes as the base width is varied, and that the current through the device increases exponentially with a decrease in base width.

Författare

J Vincent

Göteborgs universitet

Chalmers, Forskargrupp för fysikalisk elektronik och fotonik

V. Narayan

Chalmers, Forskargrupp för fysikalisk elektronik och fotonik

Göteborgs universitet

H. Pettersson

Högskolan i Halmstad

Magnus Willander

Göteborgs universitet

Chalmers, Forskargrupp för fysikalisk elektronik och fotonik

Kjell Jeppson

Chalmers, Mikroteknologi och nanovetenskap, Fasta tillståndets elektronik

Lars Bengtsson

Chalmers, Institutionen för datorteknik, Embedded and Networked Processors

Journal of Applied Physics

0021-8979 (ISSN) 1089-7550 (eISSN)

Vol. 95 1 323-326

Ämneskategorier

Fysik

Elektroteknik och elektronik

DOI

10.1063/1.1625095

Mer information

Senast uppdaterat

2018-09-06