Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat
Artikel i vetenskaplig tidskrift, 2014

Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e. g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under-or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

Ozone

yield

crops

biomass

Författare

Håkan Pleijel

Göteborgs universitet

H. Danielsson

IVL Svenska Miljöinstitutet AB

G. Mills

Centre for Ecology and Hydrology

Biogeosciences

1726-4170 (ISSN) 1726-4189 (eISSN)

Vol. 11 16 4521-4528

Drivkrafter

Hållbar utveckling

Fundament

Grundläggande vetenskaper

Ämneskategorier

Geovetenskap och miljövetenskap

Miljövetenskap

Klimatforskning

DOI

10.5194/bg-11-4521-2014

Mer information

Senast uppdaterat

2018-03-07