Development and characterization of graphene-enhanced thermal conductive adhesives
Paper i proceeding, 2014

According to Moore's Laws, complexity and power densities of electronic devices are increased during the last decades, moreover their dimensions are shrinking to nanometers causing hot-spot temperature escalation. Thermal management, therefore, becomes a critical issue for next generation of electronics. This scenario motivates development of novel thermal conductive adhesive (TCA) with enhanced thermal conductivity. Conventional TCAs use polymers as the matrix (base material) and utilize large loading weight fraction of the filler, usually silver particles, to achieve the thermal conductivity of 1-4 W/ m K at room temperature [1]. Lately it was discovered that graphene exhibit superior thermal conductivity [2] even when they are incorporated with matrix materials [3], which offers a potential to develop high thermal conductive graphene-filled compound. In this paper, a new functionalized graphene and its filled TCA have been developed and characterized. Starting from pristine graphite flakes, graphene was prepared through chemical exfoliation and functionalized with a nano silver layer to form a special metal/graphene hybrid material. Moreover, an efficient method to uniformly disperse the nano-scaled graphene hybrid material in silver-epoxy matrix was developed. Cross-section view of SEM has shown a homogeneous component structure, and TGA analysis of hybrid material is given. The developed compound is based on a commercial TCA which is composed with epoxy matrix and micro-sized Ag flakes. Thermal characterization through Laser-flash equipment has indicated that a significant thermal conductivity improvement was achieved through adding functionalized graphene into the material. Different TCA samples with different weight percentages of functionalized graphene ranging from 0 % (reference) to 11.5 % were prepared and tested to study thermal conductivity change. Data show that a thermal conductivity value of 7.6 W/ m K is reached when the graphene/silver percentage is 11.5 % that is almost 4 times higher than our reference.

chemical

dopamine coating

silver coating

additive

graphene-based TCA

thermal conductivity

Författare

Marcello Casa

Chalmers University of Technology

S. Huang

School of Mechatronics and Mechanical Engineering

Paolo Ciambelli

Universita degli Studi di Salerno

Nan Wang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

L. Ye

SHT Smart High-Tech

Johan Liu

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

15th International Conference on Electronic Packaging Technology, ICEPT 2014; Wangjiang HotelChengdu; China; 12 August 2014 through 15 August 2014

480-483

Ämneskategorier

Nanoteknik

DOI

10.1109/ICEPT.2014.6922700

ISBN

978-147994707-2