A Primal-Dual Newton Method for Distributed Quadratic Programming
Paper i proceeding, 2015

This paper considers the problem of solving Quadratic Programs (QP) arising in the context of distributed optimization and optimal control. A dual decomposition approach is used, where the problem is decomposed and solved in parallel, while the coupling constraints are enforced via manipulating the dual variables. In this paper, the local problems are solved using a primal-dual interior point method and the dual variables are updated using a Newton iteration, providing a fast convergence rate. Linear predictors for the local primaldual variables and the dual variables are introduced to help the convergence of the algorithm. We observe a fast and consistent practical convergence for the proposed algorithm.

Distributed control

Optimization algorithms

Computational methods

Författare

Emil Klintberg

Chalmers, Signaler och system, System- och reglerteknik, Reglerteknik

Sébastien Gros

Chalmers, Signaler och system, System- och reglerteknik, Reglerteknik

Proceedings of the 53rd IEEE Annual Conference on Decision and Control, CDC 2014, Los Angeles, United States, 15-17 December 2014

0743-1546 (ISSN)

5843-5848

Ämneskategorier

Beräkningsmatematik

DOI

10.1109/CDC.2014.7040304

ISBN

978-1-4673-6088-3

Mer information

Skapat

2017-10-07