High-contrast gratings for WDM VCSEL arrays
Poster (konferens), 2014
Vertical-cavity surface-emitting lasers (VCSELs) have become the workhorse of short-reach optical interconnects in datacenters and supercomputers. The last few years have seen an impressive increase in VCSEL modulation bandwidth, enabling record-high single-channel data rates exceeding 60 Gbit/s [1]. In addition to higher single-channel rates, interconnect capacity may be enhanced by employing multiplexing techniques such coarse wavelength division multiplexing (WDM). WDM VCSEL arrays can be designed using a high-contrast grating (HCG) as top mirror instead of a distributed Bragg reflector (DBR) [2].
The HCG consists of a subwavelength grating of high refractive index material (GaAs) surrounded by low refractive index material (air), see figure 1. The result is a thin, broad-band and highly reflective mirror. The reflection from the HCG has a varying phase depending on grating geometry. This can be used to set the HCG-VCSEL wavelength in a post-growth process by fabricating gratings with different period and duty-cycle. A first proof of concept has been realized and HCG-VCSELs showing resonances covering a span exceeding 20 nm have been demonstrated.
Figure 1: Top: schematic figure of HCG-VCSEL array. Left: Top and cross-sectional SEM image of HCG. Right: Simulated and experimental HCG-VCSEL resonance wavelength for different duty cycles and periods (p) measured by electroluminescence.
References
[1] D. Kuchta et al., “64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,” OFC 2014
[2] V. Karagodsky et al., “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express, 18(2), 2010
VCSEL
optical interconnect
WDM
HCG
high-contrast grating