Numerical calculation of ion runaway distributions
Artikel i vetenskaplig tidskrift, 2015

Ions accelerated by electric fields (so-called runaway ions) in plasmas may explain observations in solar flares and fusion experiments; however, limitations of previous analytic work have prevented definite conclusions. In this work, we describe a numerical solver of the 2D non-relativistic linearized Fokker-Planck equation for ions. It solves the initial value problem in velocity space with a spectral-Eulerian discretization scheme, allowing arbitrary plasma composition and time-varying electric fields and background plasma parameters. The numerical ion distribution function is then used to consider the conditions for runaway ion acceleration in solar flares and tokamak plasmas. Typical time scales and electric fields required for ion acceleration are determined for various plasma compositions, ion species, and temperatures, and the potential for excitation of toroidal Alfvén eigenmodes during tokamak disruptions is considered.

Författare

Ola Embréus

Chalmers, Teknisk fysik, Nukleär teknik

Sarah Newton

Chalmers, Teknisk fysik, Nukleär teknik

Adam Stahl

Chalmers, Teknisk fysik, Nukleär teknik

Eero Hirvijoki

Chalmers, Teknisk fysik, Nukleär teknik

Tünde Fülöp

Chalmers, Teknisk fysik, Nukleär teknik

Physics of Plasmas

1070-664X (ISSN) 1089-7674 (eISSN)

Vol. 22 5 052122- 052122

Drivkrafter

Hållbar utveckling

Styrkeområden

Energi

Fundament

Grundläggande vetenskaper

Ämneskategorier (SSIF 2011)

Fusion, plasma och rymdfysik

DOI

10.1063/1.4921661

Mer information

Skapat

2017-10-07