Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions
Artikel i vetenskaplig tidskrift, 2015

Realizing strong light-matter interactions between individual two-level systems and resonating cavities in atomic and solid state systems opens up possibilities to study optical nonlinearities on a single-photon level, which can be useful for future quantum information processing networks. However, these efforts have been hampered by unfavorable experimental conditions, such as cryogenic temperatures and ultrahigh vacuum, required to study such systems and phenomena. Although several attempts to realize strong light-matter interactions at room temperature using plasmon resonances have been made, successful realizations on the single-nanoparticle level are still lacking. Here, we demonstrate the strong coupling between plasmons confined within a single silver nanoprism and excitons in molecular J aggregates at ambient conditions. Our findings show that deep subwavelength mode volumes V together with quality factors Q that are reasonably high for plasmonic nanostructures result in a strong-coupling figure of merit-Q/root V as high as similar to 6 x 10(3) mu m(-3/2), a value comparable to state-of-the-art photonic crystal and microring resonator cavities. This suggests that plasmonic nanocavities, and specifically silver nanoprisms, can be used for room temperature quantum optics.

Författare

Gülis Zengin

Chalmers, Teknisk fysik, Bionanofotonik

Martin Wersäll

Chalmers, Teknisk fysik, Bionanofotonik

Sara Nilsson

Chalmers, Teknisk fysik, Bionanofotonik

Tomasz Antosiewicz

Chalmers, Teknisk fysik, Bionanofotonik

Mikael Käll

Chalmers, Teknisk fysik, Bionanofotonik

Timur Shegai

Chalmers, Teknisk fysik, Bionanofotonik

Physical Review Letters

0031-9007 (ISSN) 1079-7114 (eISSN)

Vol. 114 15 Art. no. 157401- 157401

Ämneskategorier

Annan teknik

Atom- och molekylfysik och optik

Annan elektroteknik och elektronik

DOI

10.1103/PhysRevLett.114.157401

Mer information

Senast uppdaterat

2022-04-05