Good Features for Reliable Registration in Multi-Atlas Segmentation
Paper i proceeding, 2015

This work presents a method for multi-organ segmentation in whole-body CT images based on a multi-atlas approach. A robust and efficient feature-based registration technique is developed which uses sparse organ specific features that are learnt based on their ability to register different organ types accurately. The best fitted feature points are used in RANSAC to estimate an affine transformation, followed by a thin plate spline refinement. This yields an accurate and reliable nonrigid transformation for each organ, which is independent of initialization and hence does not suffer from the local minima problem. Further, this is accomplished at a fraction of the time required by intensity-based methods. The technique is embedded into a standard multi-atlas framework using label transfer and fusion, followed by a random forest classifier which produces the data term for the final graph cut segmentation. For a majority of the classes our approach outperforms the competitors at the VISCERAL Anatomy Grand Challenge on segmentation at ISBI 2015.

Författare

Fredrik Kahl

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Jennifer Alvén

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Olof Enqvist

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Frida Fejne

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Johannes Ulén

Lunds universitet

Johan Fredriksson

Lunds universitet

Matilda Landgren

Lunds universitet

Viktor Larsson

Lunds universitet

CEUR Workshop Proceedings

16130073 (ISSN)

Vol. 1390 January 12-17

Ämneskategorier (SSIF 2011)

Datorseende och robotik (autonoma system)

Medicinsk bildbehandling

Mer information

Senast uppdaterat

2023-08-08