Jennifer Alvén

Postdoc vid Signalbehandling och medicinsk teknik

Jennifer Alvén är en postdoc affilierad med forskargruppen i datorseende. Jennifer forskar inom medicinsk bildanalys med fokus på djup maskininlärning för tolkning och analys av medicinska bilder. Pågående projekt inkluderar automatisk tolkning och analys av hjärtultraljud samt detektion, segmentering och klassificering av plack och förträngningar i kranskärl i skiktröntgen.

Källa: chalmers.se
Image of Jennifer Alvén

Visar 13 publikationer

2022

Semi-supervised learning with natural language processing for right ventricle classification in echocardiography - a scalable approach

Eva Hagberg, David Hagerman Olzon, Richard Johansson et al
Computers in Biology and Medicine. Vol. 143
Artikel i vetenskaplig tidskrift
2022

Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography

Alison Flehr, Julius Källgård, Jennifer Alvén et al
Osteoporosis International. Vol. In Press
Artikel i vetenskaplig tidskrift
2020

Combining Shape and Learning for Medical Image Analysis

Jennifer Alvén
Doktorsavhandling
2019

A Deep Learning Approach to MR-less Spatial Normalization for Tau PET Images

Jennifer Alvén, Kerstin Heurling, Ruben Smith et al
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science. Vol. 11765, p. 355-363
Paper i proceeding
2019

Shape-aware label fusion for multi-atlas frameworks

Jennifer Alvén, Fredrik Kahl, Olof Enqvist
Pattern Recognition Letters. Vol. 124, p. 109-117
Artikel i vetenskaplig tidskrift
2017

Improving Multi-Atlas Segmentation Methods for Medical Images

Jennifer Alvén
Licentiatavhandling
2017

Multiatlas Segmentation Using Robust Feature-Based Registration

Frida Fejne, Matilda Landgren, Jennifer Alvén et al
, Cloud-Based Benchmarking of Medical Image Analysis, p. 203-218
Kapitel i bok
2017

Max-margin learning of deep structured models for semantic segmentation

Måns Larsson, Jennifer Alvén, Fredrik Kahl
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10270 LNCS, p. 28-40
Paper i proceeding
2016

Automatic pericardium segmentation and quantification of epicardial fat from computed tomography angiography

Alexander Norlén, Jennifer Alvén, David Molnar et al
Journal of Medical Imaging. Vol. 3 (3), p. Article number 034003-
Artikel i vetenskaplig tidskrift
2016

Überatlas: Fast and robust registration for multi-atlas segmentation

Jennifer Alvén, Alexander Norlén, Olof Enqvist et al
Pattern Recognition Letters. Vol. 80, p. 249-255
Artikel i vetenskaplig tidskrift
2016

Shape-aware multi-atlas segmentation

Jennifer Alvén, Fredrik Kahl, Matilda Landgren et al
Proceedings - International Conference on Pattern Recognition. Vol. 0, p. 1101-1106
Paper i proceeding
2015

Überatlas: Robust Speed-Up of Feature-Based Registration and Multi-Atlas Segmentation

Jennifer Alvén, Alexander Norlén, Olof Enqvist et al
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 9127, p. 92-102
Paper i proceeding
2015

Good Features for Reliable Registration in Multi-Atlas Segmentation

Fredrik Kahl, Jennifer Alvén, Olof Enqvist et al
Proceedings of the VISCERAL Anatomy3 Segmentation Challenge co-located with IEEE International Symposium on Biomedical Imaging (ISBI 2015). Vol. 1390 (January), p. 12-17
Paper i proceeding

Ladda ner publikationslistor

Du kan ladda ner denna lista till din dator.

Filtrera och ladda ner publikationslista

Som inloggad användare hittar du ytterligare funktioner i MyResearch.

Du kan även exportera direkt till Zotero eller Mendeley genom webbläsarplugins. Dessa hittar du här:

Zotero Connector
Mendeley Web Importer

Tjänsten SwePub erbjuder uttag av Researchs listor i andra format, till exempel kan du få uttag av publikationer enligt Harvard och Oxford i .RIS, BibTex och RefWorks-format.

Visar 1 forskningsprojekt

2020–2021

Deep Learning för att extrahera trädstrukturer i medicinska bilder

Fredrik Kahl Digitala bildsystem och bildanalys
Jennifer Alvén Digitala bildsystem och bildanalys
Chalmers AI-forskningscentrum (CHAIR)

Det kan finnas fler projekt där Jennifer Alvén medverkar, men du måste vara inloggad som anställd på Chalmers för att kunna se dem.