Explainable Vertebral Fracture Analysis with Uncertainty Estimation Using Differentiable Rule-Based Classification
Paper i proceeding, 2024

We present a novel method for explainable vertebral fracture assessment (XVFA) in low-dose radiographs using deep neural networks, incorporating vertebra detection and keypoint localization with uncertainty estimates. We incorporate Genant's semi-quantitative criteria as a differentiable rule-based means of classifying both vertebra fracture grade and morphology. Unlike previous work, XVFA provides explainable classifications relatable to current clinical methodology, as well as uncertainty estimations, while at the same time surpassing state-of-the art methods with a vertebra-level sensitivity of 93% and end-to-end AUC of 97% in a challenging setting. Moreover, we compare intra-reader agreement with model uncertainty estimates, with model reliability on par with human annotators.

uncertainty quantification

detection

rule-based classification

explainability

morphology

Vertebral fracture assessment

compression

Författare

Victor Wåhlstrand

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Lisa Johansson

Göteborgs universitet

Jennifer Alvén

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Mattias Lorentzon

Göteborgs universitet

Ida Haggstrom

Göteborgs universitet

Lecture Notes in Computer Science

0302-9743 (ISSN) 16113349 (eISSN)

Vol. 15010 318-328
978-3-031-72116-8 (ISBN)

27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
Marrakesh, Morocco,

Ämneskategorier

Klinisk medicin

Medicinteknik

Biologiska vetenskaper

DOI

10.1007/978-3-031-72117-5_30

Mer information

Senast uppdaterat

2024-12-18