Predictive energy management of hybrid long-haul trucks
Artikel i vetenskaplig tidskrift, 2015

This paper presents a novel predictive control scheme for energy management in hybrid trucks that drive autonomously on the highway. The proposed scheme uses information from GPS together with information about the speed limits along the planned route to schedule the charging and discharging of the battery, the vehicle speed, the gear, and when to turn off the engine and drive electrically. The proposed control scheme divides the predictive control problem into three layers that operate with different update frequencies and prediction horizons. The top layer plans the kinetic and electric energy in a convex optimization problem. In order to avoid a mixed-integer problem, the gear and the switching decision between hybrid and pure electric mode are optimized in a lower layer in a dynamic program whereas the lowest control layer only reacts on the current state and available references. The benefits of the proposed predictive control scheme are shown by simulations between Frankfurt and Koblenz. The simulations show that the predictive control scheme is able to significantly reduce the mechanical braking, resulting in fuel reductions of 4% when allowing an over and under speed of 5 km/h.

Intelligent cruise control

HEV energy management

Dynamic programming

Long haulage truck

Automotive control

Predictive control


Lars Johannesson

Signaler och system, System- och reglerteknik, Reglerteknik

Nikolce Murgovski

Signaler och system, System- och reglerteknik, Mekatronik

Erik Jonasson


Jonas Hellgren


Bo Egardt

Signaler och system, System- och reglerteknik, Reglerteknik

Control Engineering Practice

0967-0661 (ISSN)

Vol. 41 83-97


Hållbar utveckling