Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape
Artikel i vetenskaplig tidskrift, 2015

Physicochemical properties of nanoparticles may depend on their size and shape and are traditionally assessed in ensemble-level experiments, which accordingly may be plagued by averaging effects. These effects can be eliminated in single-nanoparticle experiments. Using plasmonic nanospectroscopy, we present a comprehensive study of hydride formation thermodynamics in individual Pd nanocrystals of different size and shape, and find corresponding enthalpies and entropies to be nearly size- and shape-independent. The hysteresis observed is significantly wider than in bulk, with details depending on the specifics of individual nanoparticles. Generally, the absorption branch of the hysteresis loop is size-dependent in the sub-30 nm regime, whereas desorption is size- and shape-independent. The former is consistent with a coherent phase transition during hydride formation, influenced kinetically by the specifics of nucleation, whereas the latter implies that hydride decomposition either occurs incoherently or via different kinetic pathways.

Författare

Svetlana Syrenova

Chalmers, Teknisk fysik, Kemisk fysik

Carl Wadell

Chalmers, Teknisk fysik, Kemisk fysik

Ferry Nugroho

Chalmers, Teknisk fysik, Kemisk fysik

Tina Gschneidtner

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Yuri A. Diaz Fernandez

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Giammarco Nalin

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Dominika Świtlik

Uniwersytet Warszawski

Fredrik Westerlund

Chalmers, Biologi och bioteknik, Kemisk biologi

Tomasz Antosiewicz

Chalmers, Teknisk fysik, Bionanofotonik

Vladimir Zhdanov

Chalmers, Teknisk fysik, Kemisk fysik

Kasper Moth-Poulsen

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Polymerteknologi

Christoph Langhammer

Chalmers, Teknisk fysik, Kemisk fysik

Nature Materials

1476-1122 (ISSN) 1476-4660 (eISSN)

Vol. 14 12 1236-1244

Single Molecule Nano Electronics (SIMONE)

Europeiska kommissionen (FP7), 2014-02-01 -- 2019-01-31.

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier

Nanoteknik

DOI

10.1038/NMAT4409

PubMed

26343912

Mer information

Senast uppdaterat

2018-10-15