Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal
Artikel i vetenskaplig tidskrift, 2015

Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins’ function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long a-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second life time of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

Proteins

terahertz

Fröhlich condensation

Författare

Ida Lundholm

Göteborgs universitet

Helena Rodilla

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Weixiao Yuan Wahlgren

Göteborgs universitet

Annette Duelli

Göteborgs universitet

Gleb Bourenkov

European Molecular Biology Laboratory

Josip Vukusic

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Ran Friedman

Linnéuniversitetet, Kalmar

Jan Stake

Chalmers, Mikroteknologi och nanovetenskap, Terahertz- och millimetervågsteknik

Thomas Schneider

European Molecular Biology Laboratory

Gergely Katona

Göteborgs universitet

Structural Dynamics

2329-7778 (eISSN)

Vol. 2 5 artikel nr 054702- 054702

Infrastruktur

Kollberglaboratoriet

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

Ämneskategorier

Strukturbiologi

DOI

10.1063/1.4931825

Mer information

Senast uppdaterat

2023-05-26