Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds
Artikel i vetenskaplig tidskrift, 2016

The problemof recovery fromneurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problemsince it can help to develop healthy neural tissue using supportive scaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much more conductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells.

Conductive scaffolds

Electrospun cellulose

Cell attachment

Neural network

Författare

Volodymyr Kuzmenko

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Theodoros Kalogeropoulos

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Johannes Thunberg

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Sara Johannesson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Daniel Hägg

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Peter Enoksson

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Wallenberg Wood Science Center (WWSC)

Paul Gatenholm

Wallenberg Wood Science Center (WWSC)

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Materials Science and Engineering C

0928-4931 (ISSN) 18730191 (eISSN)

Vol. 58 14-23

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Produktion

Livsvetenskaper och teknik (2010-2018)

Materialvetenskap

Ämneskategorier

Cellbiologi

Neurovetenskaper

Bearbetnings-, yt- och fogningsteknik

Biomaterialvetenskap

Nanoteknik

Infrastruktur

Nanotekniklaboratoriet

DOI

10.1016/j.msec.2015.08.012

PubMed

26478282

Mer information

Senast uppdaterat

2018-09-21