Experimental investigation of binary and ternary combined manganese oxides for chemical-looping with oxygen uncoupling (CLOU)
Artikel i vetenskaplig tidskrift, 2016

Some binary and ternary combined manganese oxides of Mn with one or two additional metals or metalloids of Fe, Si, Ca and Mg were investigated as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). More specifically the following systems were investigated: (1) MnyMgOx, (2) CaMnO3-(Fe0.25Mn0.75)2O3, (3) CaMnO3-(Fe0.67Mn0.33)2O3, (4) CaMnO3-MnMgOx, (5) MnMgOx-(Fe0.25Mn0.75)2O3 and (6) Mn2SiOx-Fe2SiOx. The general trend was that the binary systems, where two metals are used in the formulation showed the most promising results in terms of oxygen uncoupling and reactivity. However, there are several ternary combinations which show a combination of high oxygen uncoupling, reactivity with methane and reasonable strength. A pseudo first-order effective rate constant was evaluated for the investigated particles. The measured rates are lower than for benchmark nickel oxide and calcium manganites, but higher than for ilmenite. The ternary System 6, Mn2SiOx-Fe2SiOx was investigated in more depth, including solid fuel experiments to determine the rate of oxygen release. At 850 and 900 °C (Mn0.5Fe0.5)2SiOx had the highest average reactivity, with a maximum average yield of 91.5% at 850 °C. On the other hand, at higher temperatures, the particles with the highest Mn content showed best behavior, i.e. (Mn0.67Fe0.33)2SiOx. Reactivity experiments with char in the FB reactor with this OC showed that the oxygen capacity for CLOU was high, 3.5 wt% at 950 °C, with a maximum release rate of 0.2 g O2/kg OC,s. The low rate of uncoupling means that the experiments with gaseous fuel were likely dominated by the direct gas-solid reaction, and not CLOU. X-ray powder diffraction suggests that the main reaction path is via (MnxFe1- x)2O3 to (MnxFe1- x)3O4, although the reaction between Mn7SiO12 to MnSiO3 cannot be ruled out as a possible route of oxygen transfer. This was supported by thermodynamic calculations of this multi-component system.

Methane

Manganese

Chemical-looping with oxygen uncoupling

Combined oxides

Författare

Tobias Mattisson

Chalmers, Energi och miljö, Energiteknik

Dazheng Jing

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi

Anders Lyngfelt

Chalmers, Energi och miljö, Energiteknik

Magnus Rydén

Chalmers, Energi och miljö, Energiteknik

Fuel

0016-2361 (ISSN)

Vol. 164 228-236

Innovative Oxygen Carriers Uplifting chemical-looping combustion (INNOCUOUS)

Europeiska kommissionen (FP7), 2010-10-01 -- 2015-04-30.

Ämneskategorier

Energiteknik

DOI

10.1016/j.fuel.2015.09.053

Mer information

Skapat

2017-10-07