Spatial Wireless Channel Prediction under Location Uncertainty
Artikel i vetenskaplig tidskrift, 2016

Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties. In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel.

Författare

Srikar Muppirisetty

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Tommy Svensson

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Henk Wymeersch

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

IEEE Transactions on Wireless Communications

15361276 (ISSN) 15582248 (eISSN)

Vol. 15 2 1031-1044 7275189

Coopnet

Europeiska kommissionen (EU) (EC/FP7/258418), 2011-05-01 -- 2016-04-30.

Styrkeområden

Informations- och kommunikationsteknik

Ämneskategorier

Elektroteknik och elektronik

DOI

10.1109/TWC.2015.2481879

Mer information

Skapat

2017-10-07