Geometry Assurance Integrating Process Variation with Simulation of Spring-In for Composite Parts and Assemblies
Artikel i vetenskaplig tidskrift, 2016

Copyright © 2016 by ASME.Geometrical variation and deviation in all the manufacturing processes affect the quality of the final product. Therefore, geometry assurance is an important tool in the design phase of a new product. In the automotive and aviation industries where the use of composite parts is increasing drastically, new tools within variation simulations are needed. Composite parts tend to deviate more from nominal specification compared to metal parts. Methods to simulate the manufacturing process of composites have been developed before. In this paper, we present how to combine the process variation simulation of composites with traditional variation simulations. The proposed method is demonstrated on a real complex subassembly, representing part of an aircraft wing-box. Since traditional variation simulation methods are not able to capture the spring-in and the special deviation behavior of composites, the proposed method adds a new feature and reliability to the geometry assurance process of composite assemblies.

Författare

Cornelia Jareteg

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Kristina Wärmefjord

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Christoffer Cromvik

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Rikard Söderberg

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Lars Lindkvist

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Johan Carlson

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

Stig Larsson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Fredrik Edelvik

Chalmers, Produkt- och produktionsutveckling, Produktutveckling

Journal of Computing and Information Science in Engineering

1530-9827 (ISSN)

Vol. 16 3 Article Number: 031003 -

Ämneskategorier

Produktionsteknik, arbetsvetenskap och ergonomi

Matematik

Drivkrafter

Hållbar utveckling

Styrkeområden

Produktion

DOI

10.1115/1.4033726