Light-sensing via hydrogen peroxide and a peroxiredoxin
Artikel i vetenskaplig tidskrift, 2017

Yeast lacks dedicated photoreceptors; however, blue light still causes pronounced oscillations of the transcription factor Msn2 into and out of the nucleus. Here we show that this poorly understood phenomenon is initiated by a peroxisomal oxidase, which converts light into a hydrogen peroxide (H2O2) signal that is sensed by the peroxiredoxin Tsa1 and transduced to thioredoxin, to counteract PKA-dependent Msn2 phosphorylation. Upon H2O2, the nuclear retention of PKA catalytic subunits, which contributes to delayed Msn2 nuclear concentration, is antagonized in a Tsa1-dependent manner. Conversely, peroxiredoxin hyperoxidation interrupts the H2O2 signal and drives Msn2 oscillations by superimposing on PKA feedback regulation. Our data identify a mechanism by which light could be sensed in all cells lacking dedicated photoreceptors. In particular, the use of H2O2 as a second messenger in signalling is common to Msn2 oscillations and to light-induced entrainment of circadian rhythms and suggests conserved roles for peroxiredoxins in endogenous rhythms.


core component

factor msn2p

gene disruption




yeast transcription factor


glucose starvation


Kristofer Bodvard

Chalmers, Fysik, Bionanofotonik

K. Peeters

Göteborgs universitet

F. Roger

Göteborgs universitet

N. Romanov

European Molecular Biology Laboratory Heidelberg

Universitat Wien

A. Igbaria

Universite Paris-Sud XI

Niek Welkenhuysen

Chalmers, Biologi och bioteknik, Systembiologi

G. Palais

Universite Paris-Sud XI

W. Reiter

Universitat Wien

M. B. Toledano

Universite Paris-Sud XI

Mikael Käll

Chalmers, Fysik, Bionanofotonik

M. Molin

Göteborgs universitet

Nature Communications

2041-1723 (ISSN)

Vol. 8 14791



Biokemi och molekylärbiologi

Cell- och molekylärbiologi