Three-Body Halo States in Effective Field Theory: Renormalization and Three-Body Interactions in the Helium-6 System
Artikel i vetenskaplig tidskrift, 2017

In this paper we study the renormalization of Halo effective field theory applied to the Helium-6 halo nucleus seen as an alpha-neutron-neutron three-body state. We include the 0(+) dineutron channel together with both the 3/2(-) and 1/2(-) neutron-alpha channels into the field theory and study all of the six lowest-order three-body interactions that are present. Furthermore, we discuss three different prescriptions to handle the unphysical poles in the P-wave two-body sector. In the simpler field theory without the 1/2(-) channel present we find that the bound-state spectrum of the field theory is renormalized by the inclusion of a single three-body interaction. However, in the field theory with both the 3/2(-) and 1/2(-) included, the system can not be renormalized by only one three-body operator.

EFT

Nuclei

Forces

Scattering

Författare

EMIL RYBERG

Chalmers, Fysik, Subatomär fysik och plasmafysik

Christian Forssen

Chalmers, Fysik, Subatomär fysik och plasmafysik

Lucas Platter

University of Tennessee

Oak Ridge National Laboratory

Few-Body Systems

0177-7963 (ISSN) 1432-5411 (eISSN)

Vol. 58 4 Article no. UNSP 143- 143

Ab initio approach to nuclear structure and reactions (++) (ANSR)

Europeiska kommissionen (FP7), 2009-12-01 -- 2014-11-30.

Ämneskategorier

Fysik

DOI

10.1007/s00601-017-1307-1