ENGINEERING BOND MODEL FOR CORRODED REINFORCEMENT
Artikel i vetenskaplig tidskrift, 2018

Corrosion of the reinforcement in concrete structures affects their structural capacity. This problem affects many existing concrete bridges and climate change is expected to worsen the situation in future. At the same time, assessment engineers lack simple and reliable calculation methods for assessing the structural capacity of structures damaged by corrosion. This paper further develops an existing model for assessing the anchorage capacity of corroded reinforcement. The new version is based on the local bond stress-slip relationships from fib Model Code 2010 and has been modified to account for corrosion. The model is verified against a database containing the results from nearly 500 bond tests and by comparison with an empirical model from the literature. The results show that the inherent scatter among bond tests is large, even within groups of similar confinement and corrosion level. Nevertheless, the assessment model that has been developed can represent the degradation of anchorage capacity due to corrosion reasonably well. This new development of the model is shown to represent the experimental data better than the previous version; it yields similar results to an empirical model in the literature. In contrast to many empirical models, the model developed here represents physical behaviour and shows the full local bond stress-slip relationship. Using this assessment model will increase the ability of professional engineers to estimate the anchorage capacity of corroded concrete structures.

Assessment

Corrosion

Bond

Anchorage

Reinforced concrete

Författare

Mattias Blomfors

Chalmers, Arkitektur och samhällsbyggnadsteknik, Konstruktionsteknik

Kamyab Zandi

Chalmers, Arkitektur och samhällsbyggnadsteknik, Konstruktionsteknik

Karin Lundgren

Chalmers, Arkitektur och samhällsbyggnadsteknik, Konstruktionsteknik

Dario Coronelli

Engineering Structures

0141-0296 (ISSN)

Vol. 156C 394-410

Ämneskategorier

Samhällsbyggnadsteknik

Infrastrukturteknik