Induced unconventional superconductivity on the surface states of Bi2Te3 topological insulator
Artikel i vetenskaplig tidskrift, 2017

Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p(x) + ip(y) wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral px + ipy component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and pi coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.

bi2se3

junctions

edge

symmetry

strain

thin-films

Författare

Sophie Charpentier

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

luca galletti

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Gunta Kunakova

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Riccardo Arpaia

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Yuxin Song

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Reza Baghdadi

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Shu Min Wang

Chalmers, Mikroteknologi och nanovetenskap (MC2), Fotonik

Alexei Kalaboukhov

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Eva Olsson

Chalmers, Fysik, Eva Olsson Group

Francesco Tafuri

Universita degli Studi di Napoli Federico II

Superconductors, oxides and other innovative materials and devices

Dmitry Golubev

Aalto-Yliopisto

Jacob Linder

Norges teknisk-naturvitenskapelige universitet

Thilo Bauch

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

Nature Communications

2041-1723 (ISSN)

Vol. 8 1 2019

Ämneskategorier

Fysik

DOI

10.1038/s41467-017-02069-z

PubMed

29222507