CO-COMBUSTION IN AN OXYFUEL POWER PLANT WITH SYNTHESIS GAS PRODUCTION
Konferensbidrag (offentliggjort, men ej förlagsutgivet), 2007

This paper investigates new possibilities and synergy effects for co-firing of biomass and coal in an energy system with carbon capture. A new way to make the oxyfuel process more effective through a sub stoichiometric combustion is enabled due to the co-combustion of biomass in the process, which keeps the process CO2 neutral. The sub stoichiometric combustion leads to a production of synthesis gas in the process, which is converted to DME in an integrated process. An available study on an oxyfuel power plant is combined with a process for DME production in a computer model to simulate the suggested process. The degree of sub stoichiometric combustion, or amount of synthesis gas produced, is optimized with respect to the overall efficiency. The maximal efficiency were found at a stoichiometric ratio of 0.6 were the efficiency for the electricity producing oxyfuel process is 0.35 and the efficiency for the DME process is 0.65. The results show how biomass can improve carbon capture processes and on a possibility for an expansion and an efficient use of biomass.

bio-syngas

CO2 emission reduction

Biomass/coal cofiring

Författare

Fredrik Normann

Chalmers, Energi och miljö, Energiteknik

Henrik Thunman

Chalmers, Energi och miljö, Energiteknik

Filip Johnsson

Chalmers, Energi och miljö, Energiteknik

Proceedings of the 15th European Biomass Conference & Exhibition - From research to market Deployment, Berlin, Germany, 7-11 May 2007,

Ämneskategorier

Energiteknik

Mer information

Skapat

2017-10-07