Multibeam Focal Plane Arrays with Digital Beamforming for High Precision Space-Borne Ocean Remote Sensing
Artikel i vetenskaplig tidskrift, 2018

The present-day ocean remote sensing instruments that operate at low microwave frequencies are limited in spatial resolution and do not allow for monitoring of the coastal waters. This is due to the difficulties of employing a large reflector antenna on a satellite platform, and generating high-quality pencil beams at multiple frequencies. Recent advances in digital beamforming focal-plane arrays (FPAs) have been exploited in this paper to overcome the above problems. A holistic design procedure for such novel multibeam radiometers has been developed, where: 1) the antenna system specifications are derived directly from the requirements to oceanographic surveys for future satellite missions and 2) the numbers of FPA elements/receivers are determined through a dedicated optimum beamforming procedure minimizing the distance to coast. This approach has been applied to synthesize FPAs for two alternative radiometer systems: a conical scanner with an offset parabolic reflector and a stationary wide-scan torus reflector system, each operating at C -, X-, and Ku-bands. Numerical results predict excellent beam performance for both systems with as low as 0.14% total received power over the land.

reflector antenna feeds

microwave radiometers

Array antennas


Oleg Iupikov

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

Marianna Ivashina

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk

N. Skou

Danmarks Tekniske Universitet (DTU)

C. Cappellin


Katrine Pontoppidan


Cornelis G.M. Van'T Klooster

European Space Research and Technology Centre (ESA ESTEC)

Technische Universiteit Eindhoven

IEEE Transactions on Antennas and Propagation

0018926x (ISSN) 15582221 (eISSN)

Vol. 66 2 737-748 8068265




Annan elektroteknik och elektronik



Mer information

Senast uppdaterat