The electron-phonon interaction at deep Bi 2 Te3-semiconductor interfaces from Brillouin light scattering
Artikel i vetenskaplig tidskrift, 2017

It is shown that the electron-phonon interaction at a conducting interface between a topological insulator thin film and a semiconductor substrate can be directly probed by means of high-resolution Brillouin light scattering (BLS). The observation of Kohn anomalies in the surface phonon dispersion curves of a 50 nm thick Bi2Te3 film on GaAs, besides demonstrating important electron-phonon coupling effects in the GHz frequency domain, shows that information on deep interface electrons can be obtained by tuning the penetration depth of optically-generated surface phonons so as to selectively probe the interface region, as in a sort of quantum sonar.

Författare

M. Wiesner

Uniwersytet im. Adama Mickiewicza w Poznaniu

A. Trzaskowska

Uniwersytet im. Adama Mickiewicza w Poznaniu

B. Mroz

Uniwersytet im. Adama Mickiewicza w Poznaniu

Sophie Charpentier

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

S. Wang

Chinese Academy of Sciences

Yuxin Song

Chalmers, Mikroteknologi och nanovetenskap, Fotonik

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

P. Lucignano

Superconductors, oxides and other innovative materials and devices

Universita degli Studi di Napoli Federico II

G. Benedek

Donostia International Physics Center

D. Campi

Universita' degli Studi di Milano-Bicocca

M. Bernasconi

Universita' degli Studi di Milano-Bicocca

Francisco Guinea

University of Manchester

IMDEA Nanoscience Institute

A. Tagliacozzo

Laboratori Nazionali di Frascati di INFN

Superconductors, oxides and other innovative materials and devices

Universita degli Studi di Napoli Federico II

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 7 1 16449

Graphene-Based Revolutions in ICT And Beyond (Graphene Flagship)

Europeiska kommissionen (EU) (EC/FP7/604391), 2013-10-01 -- 2016-03-31.

Ämneskategorier (SSIF 2011)

Elektroteknik och elektronik

Den kondenserade materiens fysik

DOI

10.1038/s41598-017-16313-5

Mer information

Senast uppdaterat

2022-12-14